6 Installation of Renewable Energy

into Accelerator

Examples of New Energy Power Plants for the Green ILC (Tadashi Fujinawa, Riken)

1.Abstract

Construction of the International Linear Collider (ILC) in Japan will soon begin. This facility will be very large, so it will also consume considerable energy. It will operate continuously for 7,000hours per year. Thus, it is necessary not only to consider how to save energy, but also to introduce new kinds of energy, including renewable energy, for use in the ILC.

The government declared that renewable energy should account for between 23% and 25% of all electrical energy sources in 2030. However, renewable energy sources currently provide only 10% of all energy. A large portion of those sources are hydro-powered, but no suitable locations for additional hydro-power generation remain.

In this paper, forms of renewable energy that could be developed for ILC use will be described, namely, solar energy, wind energy, geothermal energy, hydraulic energy, biomass, and thermal energy obtained from a temperature difference or thermal recovery.

2.Solar cells (photo-voltaic systems: PV systems)

Solar power stations are among the easiest renewable energy systems to build, in contrast to wind power generators and geothermal power stations. However, PV systems are not reliable or stable power sources.

In this paper, we will discuss the solar park for the Green ILC (design date supplied by UNISUN JAPAN). The AC output capacity will be 200MW, and the DC capacity at installation will be 220MW. A similar plant is shown in Fig. 1.

The inverter will be a TMEIC 1500kW (750kW x 2)/unit. TMEIC has the largest market share in Japan at more than 70%, as well as more than half of the global share.

The output voltage will be 22kV, and the solar panels will each generate 265W.

A one (1) MW solar power station requires $15,000m^2$ of land. The basic design is as follows.

Solar Power F	Plant – Neuhard	enberg 145 MW		
Project Overview		Project Loca	ation	
 The project is one west Europe, locat of 20 MW. The proj The project is deve The EPC contractor 	part of the biggist single f ed in neuhardenberg, Gern ject achieved interconnection loped over 350,000m ² of fla of 20 MW is Baysolar Proje	² V project(145MW) in nany with DC capacity on in September 2012. at land. :kt GmbH.	now-Mogin Mirkische Höhe Reuhindenberg met Gusow-Platko	
Key statistics				
Project Name		Neuhardenberg	South States States of	And the second s
Location		Jichisu, Romania		
Nominal Capacity	kwp	20,000	A CONTRACTOR OF THE OWNER	
first year's production	Gwh	13.15		
Technology		Poly		
Modules		Talesun		STA STANLES
Inverters		Powador	- A CONTRACT	
Grid Connection		30-Sep-12		and the second s

Fig. 1 One of the largest solar plants, generating 145MW (Germany) and presented by UNISUN JAPAN.

Required land area: $15,000 \text{m}^2/\text{MW} \times 220 \text{MW} = 33,000,000 \text{m}^2$ (3,300ha). This area corresponds to dimensions of $150 \text{m} \times 22,000 \text{m}$ and does not include the 22 kV/154 kV substation and control building.

Array design: 23 panels/string, 6.095kW/string

Solar panel quantity: 220,000kW ÷ 6.095kW/string = 36,095 strings

36,095 strings × 23 panels/string = 830,185 panels (219,999kW)

In the subsequent discussion, the following symbols are used: V_{oc} (open circuit voltage), V_{mp} (maximum peak voltage), I_{sc}/A (short-circuit current), and I_{mp}/A (maximum peak current).

The reasons for choosing 23 panels/string are as follows, considering that we will use a JA solar JAM6 (BK) 60-265/SI, which has $V_{oc} = 38.3$ V at 25°C and $V_{ppm} = 31.1$ V at °C. In the case of 23 series, 984.7V $< V_{oc} < 1000$ V at -10 °C and 554.2V $> V_{ppm} > 540$ V at

80°C.

 $3,960 \text{ panels} \div 23 \text{ panels/string} = 172 \text{ strings}$

172 strings × 9A (I_{sc}/A) = 1,548A

 $1,548A \div 16$ feeders = 96.75A/feeder

Please refer to page 6 of the GO-A5ES-2014-001-A specifications.

The rated current of the power fuse is 160A, and the recommended current is 102A $(160 \div 1.25 \div 1.25 = 102A)$, according to NEC690.8 (US electrical STD).

97A < 102A

The actual current is 11 parallel/box \times 15 array boxes + 7 parallel/box = 16 incoming for one 750kW inverter.

 $\therefore 11 \times 9A = 99A$

99A < 102A

The required number of inverters is as follows: $200MW \div 1.5MW$ /inverter = 133 inverters.

Local governments will be essential in building such immense solar parks. These power stations should be built on the ILC grounds by a business partnership, and the land should be supplied by the government for this enterprise. The company will pay taxes as well. In case the land is farmland or is protected forest by law, the local government will provide the necessary documentation and change the land category so that the power station can be built.

All of the generated power will be consumed by the ILC, and therefore no transmission capacity issues will occur. Tohoku-epco claimed that solar power will overflow sooner or later; however, their estimate assumed that all solar parks approved by the Ministry of Economy, Trade and Industry (METI) would generate power.

All of the nuclear power stations (NPSs) shown in Table 1 are operable. METI estimates that only 40% of approved solar parks will actually be commissioned, while the other 60% will be given up for some reason. The NPSs in Table 1 are all boiling water reactors (BWRs), which is same type of NPS as the Fukushima Daiichi NPS. Furthermore, some of them are very old, and therefore it would be quite unlikely for them all to be simultaneously operable before they are decommissioned. Thus, it can be concluded that Tohoku-epco's concern is needless.

The key is that local governmental support is necessary for this type of renewable

energy system to be implemented. The land should be free, not only that used for the ILC main body, but also that for the Green ILC power stations. The government will perform all necessary legal work, such as changing forest land or farmland to miscellaneous lands.

As mentioned previously, there are no transmission capacity issues since the ILC will consume all of the generated power.

Table 1. Nuclear power stations related to Tohoku-epco.

Concerning the economics, the feed-in tariff (FIT) price for solar power will be $\frac{27}{kWh}$ after June in FY2015. The FIT price has decreased from $\frac{42}{42}$ in 2012 to $\frac{436}{36}$ in 2013, $\frac{432}{32}$ in 2014, and $\frac{429}{29}$ until the end of June this year, after which it will be $\frac{427}{kWh}$. In this paper, we will assume $\frac{420}{kWh}$ as the FIT price. The sunshine time in Iwate Prefecture is 1,888h/year, corresponding to a power generation of 234,110 MWh/year and an output price of 4.7 billion $\frac{4}{year}$. The Green ILC utility company will sell all of the power to Tohoku-epco, and about 10% of the income will be donated to the ILC. After the FIT has been paid off, control of the power plant will be transferred to the ILC, and thereafter, the ILC will be able to obtain free electricity for about 1,250 h/year.

The other government support requested of the METI Sendai office is that the licensed electrical engineer will maintain both the ILC and the Green ILC. Since the Fukushima Daiichi NPS disaster, there has been a heavy shortage of licensed electrical engineers.

3. Wind power generation

In the early stages of Japanese wind power generation, power stations were constructed by local governments with imported turbines. However, they did not well endure Japanese weather, and almost all were retired. The Japanese weather phenomena and problems that affect wind power are as follows.

- The direction of the wind changes many times per day. For example, there may be sea breezes in the morning and mountain winds in the evening. Furthermore, mountain sides have irregular air flows.
- 2) Wind power generation requires an average wind speed of 6.5m/s. It is quite difficult for humans to live in locations that meet this requirement, so no access roads or transmission lines are available. Thus, utility costs will be high without a generator system. For instance, the Chiba Marine field is famous for its strong winds, and this baseball park has the only wind speed meter in Japan. However, the strong winds that are present at the ball park are not usable for power generations, as the winds that are defined as strong at this location only measure 3–4 m/s according to the wind speed meter. Figure 2 shows the Chiba Lotte Marines field.

Fig. 2 Home ground of Chiba Lotte Marines (QVC Marine field)

- 3) If people live nearby, low-frequency noise must be considered.
- 4) Typhoons and/or tornados generate winds over the design speed.
- 5) In Japan, thunderstorms occur more often than they do in other nations, and lightning may hit the turbine blades.
- The center line of a turbine shaft is located very high (50–100m), making it difficult to maintain and repair.
- Assessments of bird strikes and other environment factors take time (more than three years). Thus, it is difficult to judge whether or not to invest.

Even though there are many difficulties involved in wind power station construction, if locations are available that will yield more than 2MW/unit of power generation and if there is strong support from the local government, it is possible to build such stations. In addition, the FIT of $\frac{1}{22}$ /kWh will be maintained for 20 years, and according to Tohoku-epco, the peak power times of solar and wind power are different (Graph 1), so both generation systems can use same transmission lines and same locations. Thus, if a 200MW solar park is constructed at the ILC, then 72MW of wind power can be generated also. In this case, one generator unit would yield 6MW, which would be the greatest power generation in the world for a single unit. A total of 12 generator units will be located at the north end of the solar park. It is recommended that the local government study the average and maximum wind speeds at the ILC.

Graph 1. Peak output of solar cell and wind power generation reported by Tohoku-epco.

4.Geothermal power generation

Tohoku-epco and Toshiba explained geothermal power generation in another section of the Green ILC. Please refer to the above documents.

The Ministry of the Environment reported that the potential geothermal power generation is 33,100MW, while the recoverable amount is 14,200MW. This power is 17 times higher than that consumed by the ILC.

The author studied geothermal power generation at Japan Metals and Chemicals Co. Ltd. in Iwate Prefecture as a student 50 years ago. This company has more than 50 years of engineering knowledge and experience related to geothermal power generation.

The geothermal power generation capacity is 100MW in Iwate Prefecture, which is the second largest capacity in Japan. If an additional 100MW of geothermal energy were generated in Iwate, all of the power consumed by the ILC would be provided.

In addition, Japanese geothermal power generation manufacturers are very productive and get 70% of market share of the world. MHI (Fig. 3), Toshiba, and Fuji Electric always compete with one another to be the world's most productive geothermal power manufacturer.

Fig. 3 From MHI Graphic.

5. Hydro-power generation

Hydro-power will be generated at the base load authorized by METI. However, water rights issues appeared when the construction plan was proposed. Thus, local government support will be required.

Here we present the calculations of the energy generated by a 1MW solar power station and the requirements necessary to generate the same amount of energy hydraulically.

The energy generated by a 1MW solar power station is as follows:

1MW × 1,800h/year (insolation time) × 0.6 (ratio of sunshine: from sunrise to sunset) = 1.08GWh.

The construction cost is $\frac{200,000}{kW}$ (for the solar cells only), yielding a total cost of $\frac{200,000,000}{200,000}$.

To achieve the same output by hydro-power:

1.08GWh \div 24h/day \div 365 days/year = 123kW

The hydro-power generation P for a drop H and water volume Q is given by:

 $P (kW) = 9.8 \times H (m) \times Q (m^3/s)$

In order to achieve 123kW of power generation, if $Q = 1 \text{ m}^3$, then *H* will be 12.6m: 123kW = $9.8 \times 12.6 \text{m} \times 1 \text{m}^3/\text{s}$.

Considering the efficiencies of turbines and generators, H should be about 14 m. The FIT price will be $\frac{434}{kWh}$ for 20 years (assuming a total output of not more than 200 kW), yielding a total income of $\frac{4732,686,400}{4732,686,400}$ over 20 years. Hitachi and Toshiba also have catalogs of mine hydro-power.

6. Biomass power generation

MHI developed a biomass plant at the Koiwai ranch in Iwate Prefecture that uses methane gas from dung as fuel (Appendix 1). In addition, MHI and Hakutsuru Japanese Sake Brewing Industry Ltd. are researching how to produce liquid fuel from straws (Appendix 2).

In Japan, biomass generation is currently difficult economically; however, after the commissioning of the ILC, an international scientific project will be operational that will require a sewage treatment plant. Methane gas from this sewage treatment plant could be used as power-generator fuel. Biomass power centers can also produce fertilizer from sludge by using engine waste heat. The FIT for this system is $\frac{1}{39}$ /kWh for 20 years.

During construction, a great quantity of wooden boxes is generated as waste material. Similarly, forestry necessarily produces large amounts of wooden chips as waste. The best way to use these by-products is as raw material for the paper industry, and there are many paper factories in the Tohoku area. If they do not wish to receive these materials, the second option is to thermally recycle them. In this case, the waste would be used as fuel for boilers, turbines, and generators. This type of system is called a carbon-neutral power station. After construction, such a plant would be a waste-treatment plant for the city. The FIT for such as system ranges from $\frac{13}{kWh}$ to $\frac{20}{kWh}$ for 20 years.

7. Temperature-difference energy (waste heat recovery)

The author previously reported that the planned supply of waste heat from the Radioactive Isotope Beam Factory (RIBF) to the next-door 4th elementary school in Wako for heating in winter and for swimming pool temperature control was not working,

demonstrating the difficultly of supplying energy outside.

Now we have a new technology, the binary turbine. Turbine systems are being introduced into the market by MHI and other companies. The energy sources will be RF power sources, He compressors, transformers, HVACs, and chillers for water-cooling systems. If the coolant outlet temperature is more than 60°C, and ideally as much as 80°C, electric power generation as well as waste heat recovery can be achieved. For this purpose, teams working on the accelerator and turbine should jointly consider and resolve the differences between the two arguments.

The 200MW electrical consumption of the ILC will be released as heat. If half of that amount can be controlled as waste heat and if the binary turbine system has an efficiency of 40%, the power generated by the turbine system will be 40MW, which is same as the consumption of the ILC control building. Furthermore, this amount is twice as high as RIKEN Wako campus's peak consumption from the utility company, Tokyo Electric Power Corporation (TEPCO).

8. Conclusion

The renewable energy sources that can be used in the ILC were explained in this paper. New energy plants cannot be established independently; they require support by local governments and/or utility companies. Without this support, it would be nearly impossible to build the Green ILC in addition to the ILC itself.

Only temperature-difference energy can be controlled by the team at the ILC, but the necessary system is one of most difficult to establish, as reconsideration of the decisions made by the accelerator builders would be required.

Nevertheless, there are numerous energy sources that could be implemented at the Green ILC. Therefore, only the selection of the preferred energy sources and concentration are necessary to realize the Green ILC.

9. Appendix

- 1) Mitsubishi heavy industry graph No.170 2013.1
- 2) Mitsubishi heavy industry graph No.163 2011.

Power saving and use of New Energy at Riken RI Beam factory (Tadashi Fujinawa, Riken)

1 Introduction

RI Beam Factory (following RIBF) of RIKEN Nishina Center for Accelerator-Based Science (hereinafter RNC) is a heavy ion cyclotron of the top in the world, was commissioned three months earlier than expected in December 2006, the superconducting ring cyclotron (hereinafter SRC) succeeded the initial beam extraction, then, a lot of the research results has been continued to report in various fields.

This time, in the WG of Green ILC where we consider energy saving and new energy, the efforts for the RIKEN of advanced energy-saving technologies are reported, such as the world's first combined heat and power system (CGS) installed in accelerator facility.

2 Co-Generation System

For the introduction of CGS, environmental measures are the largest purpose, as well as Green ILC. When we explained the RIBF plan in RIKEN of the Board, we received a proposition, as physicist, to think something contribution to make "world best accelerator facilities, which, of course, it is specialty of RIKEN accelerator, however, while an accelerator uses electricity and water as if we use public water, something ecology in accelerator, considering about the Kyoto Protocol has been studied." And we, studied various new energy, and concluded that CGS (also referred to as cogeneration) with the introduction of the gas turbine generator (GTG) as the main engine is the best in the RIBF.

In this method, by supplying electricity and heat at the same time, efficiency is greatly improved compared with the supply of electrical only or heat only. The GTG body is shown in Figure 1. Figure 2 photo shows periodic inspections. Figure 3 shows a flow diagram of CGS.

Figure 1 GTG body, and the right side is the compressor, left turbine

Figure 2 during annual inspection, the front is the compressor, rear is turbine

Figure 3 G is the generator, C shows the air compressor and a turbine, by generating saturated steam in the waste heat boiler, making it as a heat source of the absorption chiller cooling to make a cold water of 7° C, for the building cooling and the accelerator facility cooling, and is used for the intake-air cooling of the CGS.

This equipment has been introduced as an environmental measure, that is, as a response to the Kyoto Protocol as RIKEN. In fact, it also plays very important role into a function of accelerator facility as a large uninterruptible power supply at the same time.

CGS is using natural gas supplied from the Tokyo gas as fuel, the output of the generator is introduced and consumed in the RNC and the commercial lines of the Tokyo Electric Power Company (TEPCO) in parallel. If a problem in CGS has occurred, power is supplied to all of the accelerator from TEPCO uninterruptible.

If the instantaneous voltage drops (voltage sag) or power failure occurs in TEPCO, CGS disconnect the commercial line within one cycle, CGS provides power only to the critical loads such as helium refrigerator.

We believe that it is previous special situation to drive the accelerator, if the supply of TEPCO and Tokyo Gas will be disabled at the same time.

It should be noted that, for the power shortage due to the Fukushima Daiichi nuclear power plant accident in 2011, RIKEN CGS contributed to power supply to perform continuous operation until the end of the year.

For more information, accompanying CGS, you should refer the article in "accelerator" Vol.8, No.1, 2011(18-25) and "consideration of the large accelerator facilities for combined heat and power device as an uninterruptible power supply - RIKEN CGS-"¹⁾.

For English article should be referred to a Proceedings²⁾ of ARW2013 and "RIKEN Accelerator Progress Report 36. (2003) ", "Cogeneration system for RI Beam Factory³⁾ ", Report 37 (2004) CGS operation⁴⁾.

Finally, as for the environmental effect, maximum efficiency is proud of the 68%, because the generator is located directly above the accelerator, there is no transmission loss. Natural gas is a very clean fuel compared to coal and oil. CGS absorption refrigerator is different from the typical refrigerator to repeat the compression-expansion by using a motor, there is an advantage of not using any ozone-depleting gas or greenhouse gases.

3. Energy saving and environment effect other than the CGS

It was already mentioned that minimization of transmission loss by placing the CGS just above the accelerator facilities. For commercial lines from TEPCO, the second special high voltage substation (the second extra-high voltage) was constructed at the top of the accelerator building, connected the 66kV underground line by the full-length 750 m from the first extra-high voltage substation in order to reduce the transmission loss. In the first floor basement, place the power supply room 2 to transform the high voltage (6.6kV) to low voltage (415, 220, 110V), further down below the power room 1 which houses the accelerator power was placed, in the next to the power room 1 the accelerator was arranged, in this way, the cable length was minimized.

In addition, high-voltage AC power supply of the experimental equipment SHARAQ (1MVA) and Rare-RI Ring (R3) 1.5MVA deployed to the accelerator room, with an effort to minimize the low-voltage cable length.

In the accelerator facilities, a lot of the electric motor in the cooling system being used, it is kept in mind the energy saving using a high efficiency electric motor actively.

It shows a photograph of a high-efficiency motor in Figure 4. Ordinary efficiency of the electric motor has a warship color in any manufacturer, gold color motor in the photo is made of Toshiba, a black color motor by Fuji Electric, they are descriptive.

Mitsubishi has two color motor, 31th US Navy warship color of GSI Creos Mr. HOBBY is high efficiency, 32th Japan Navy color (Yokosuka) is ordinary efficiency, to be difficult to determine the type. We suspect that there is a length of day advance in Toshiba and Fuji.

Figure 4 high-efficiency motors that are used in the cooling system (Toshiba)

Direct drive method was adopted for the motor start-up scheme considering helium compressor (315kW) as a main system, is a good start method for efficiency compared with the other start-up method (reactor, compared to Y- \triangle and inverter start-up).

High efficiency high/low voltage transformer is also adopted. Efficiency of the transformer are also advances year by year, the latest of a transformer for the RNC is the 99.4% of R3 (at rated 1.5MVA).

In addition, the transformer there is no worry of fire by using a dry-type transformers. As a result, carbon dioxide fire extinguishing equipment which has a risk of death is no longer needed. As harmonic voltage measures, we arranged the transformer alternately the winding $\triangle - \triangle$ and the $\triangle -Y$, so as to obtain the same effect as three winding transformer. In CGS central control room, there is a harmonic monitoring device, and always shows the minimum value of the measurement limit. This is also that environment friendly design.

For more information, please refer to the English article ^{5) 6)}.

4. New energy other not adopted

1) Solar cell: As the simplest new energy, solar power generation is raised. Since the energy density is low (a large area required), Wako of sunshine time is 1840 hours per year, even side-by-side solar cells on the existing Nishina Memorial Building roof, power generation capacity of about 40kW the maximum, there is unreasonable as the accelerator power. However, as a whole RIKEN, five places at the moment, we have total a 120kW of equipment. All generated power is a self-consumption, does not use fixed-price purchase system.

2) Wind power generation: suitable wind speed for wind power generation is 6 m per second, while average wind speed of Wako City is the 1 m. So it is not at all adapted.

3) Adsorption chillers: by changing the cooling water output temperature of the accelerator from 60 to 80° C, and making it as a heat source of the adsorption-type refrigerator, to give the cold water of 7°C to be used for the air conditioning and cooling. As accelerator side, there is anxiety that the cooling water temperature is high, so we gave up.

4) Temperature difference energy⁷⁾: those are proposed in Wako City area new energy development committee, that waste heat of RIBF the (around 40°C), supplied to adjacent the Wako municipal fourth elementary school, for heating, hot water supply, and pool. It has been favorite proposal benefit to Wako areas as a result of the study over two years, however, a business entity did not appear, and did not reach to a realization, together with a problem of the education committee.

For more details, refer to the English documents.

5. Application to the ILC

High-efficiency equipment (electric motor, transformer, etc.) and so on, should be introduced for granted. It is necessary to note that it is slightly different even in the same high efficiency number by the manufacturer.

Next, as for the electric transmission and distribution, therefore it is very important and is described in a separate description. Please refer there.

Adsorption chillers with good improvement for performance in recent years, and worth considering because also possible to operate at a lower temperature.

CGS is an energy saving of the centerpiece of RIBF, but here it is necessary to pay attention.

The first, in planned construction site, there is no city gas, that is to lay the pressure pipe for CGS is required huge cost. In the case of RIKEN, because there was a medium pressure pipe next to the site of RIBF, so it was realized. Even if temporarily it is solved the problem of gas piping, because the ILC using 10 times the electricity of RIBF, by simply thinking, it requires 65MW of engine. For the gas engine it is too large, for the latest of composite power generation GTG it is too small.

Furthermore, absorption chiller which is key component of CGS has no noticeable progress in this more than 10 years. On the other hand, COP (Coefficient of Performance) of the motor drive refrigerators improving to 3 or more in the hot water supply, up to 6 or more in cooling, rather than a combined heat and power, combined cycle power generation (Combined Cycle; CC) can be used to convert to electricity, then to carry out the cooling and heating by the converted electricity. Those efficiency is good in the final end.

Temperature difference energy, it is to find a business entity who can build firstly with the investment.

1) "accelerator" Vol.8, No.1,2011 (18-25) record and consideration of the large accelerator facilities for combined heat and power device as an uninterruptible power supply - RIKEN RIBF of CGS-

2) ARW2013. Proceedings

3) RIKEN Accelerator Progress Report 36. (2003) Cogeneration system for RI Beam Factory

4) Report 37 (2004) CGS operation

5) WAO07. DESIGN, INSTALLATION, OPERATION AND MAINTENANCE OF ELECTRICAL POWER SUPPLY FOR RI BEAM FACTORY

6) RIKEN Accelerator Progress Report 46 (2013) AC power system for Rare-RI Ring.

7) New Energy Establishment Committee of Wako City District and RIBF; RIKEN Accelerator Progress Report

^{6.} Reference

Solar Power (Junichi Honda, Solar Power Association and Kyocera)

Biomass power generation using ILC exhaust heat (Mituo Takeda, Kabuki, Hitachi-cement, Nihon-premium, Mizuing)

1. Introduction

Since International Linear Collider: ILC, become one of the foundation industry for the region, it will be intended to integrate to regional management unification. If the facility is operational once, a number of researchers and their families from abroad will visit and stay, then how the effective use of the waste generated from there is a theme as a national project. Furthermore, it is considered necessary to indicate the way of next generation waste disposal incorporation with the entire region is developed.

By operating the linear accelerator of 30km or more as the main ILC facilities, a large amount of heat is generated. By utilizing the exhaust heat, it is possible to ensure the thermal energy source, which accounts for significant costs in organic waste treatment at low cost. Biomass power generation, although a wide variety of methods have been taken, as simple as possible is good, by using an inexpensive heat, direct combustion power plants which accept any type of organic waste are proven, and can be expected.

2. Biomass direct combustion power generation plant

(1) the value of biomass direct combustion power generation plant

 \cdot It is possible to generate electricity by using animal and vegetable waste generated in the region.

- By using the waste heat of the ILC facility, it is possible to dry them with costs cheaper

- Along with the drying \rightarrow incineration \rightarrow power generation is simple line, also accepted any kind of organic waste.

And disposal destination of sewage sludge and organic waste will expand.

- Reduction of the incineration plant of each municipality is measurably proceed.

(2) flow of direct combustion power plant

In biomass direct combustion power plant flow as shown in Figure 1, it is to accept all of the biomass from the high moisture content livestock manure to as low as rice straw, is to dry by the ILC exhaust heat and recovered heat. Then burned directly, and then the power generation by the steam, use the full generated power at the ILC facilities.

Figure 1 biomass direct combustion power generation plant flow

(3) Considerations of direct combustion power plant

<Notes of dry>

 \cdot For drying machine, the rotary dryer type is safe to cope with the wide variety of biomass.

 \cdot When the oxygen concentration is high, it is necessary to lower the oxygen concentration replaced with steam (turbine extraction steam) and the exhaust gases, since there is likely to be burned in a dryer.

 \cdot In order to keep the dry exhaust as much as possible, it will be exhausting and dehumidified in the wet scrubber, re-heating by the ILC recovered heat, and recycling and re-using some part.

 \cdot Surplus exhaust, you can either use as combustion air of incinerator, or on the deodorizing process, then dissipated to the atmosphere.

<Incinerator type>

 \cdot By taking into account the nature, input amount, fluctuation range of input, the optimum furnace type should be selected from stoker, fluidized bed, and the other.

 \cdot Review of the post-process of the exhaust gas treatment.

3. Power generation amount expected by biomass direct combustion

(1) Biomass endowment amount and effectiveness available amount

In the Tohoku region (Iwate, Miyagi Prefecture) and Kyushu region (Saga, Fukuoka Prefecture), each of the biomass endowment amount and effectiveness available amount can be estimated from NEDO data, as shown in Table 1.

		林地發	浅材	切り捨て	間伐材	果樹	剪定材	9	ケ	稲作残渣・稲わら	
		有効利用可能量 DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年
東北	岩手県	4,980	90,142	5,982	127,390	5,214	59,956	1,475	18,432	39,315	534,690
地区	宮城県	1,316	24,627	2,167	46,155	3,117	35,847	4,644	58,055	51,075	694,617
九州	佐賀県	746	13,495	477	10,148	7,733	88,935	17,311	216,383	18,752	255,031
地区	福岡県	402	7,282	1,757	37,423	12,614	145,056	29,999	374,992	27,493	373,900
		報佐建築	k. 4571 ±л	±.	hi	この世の	曲步碑达		.44		7+
		11日TF 7支73	1 18/2	友/	200	-C071B07	辰禾戏祖	,	·	~.	~+
		有効利用可能量 DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年
東北	岩手県	4,790	68,022	1,444	19,638	9,455	102,111	2,417	32,876	135,516	1,843,020
地区	宮城県	5,416	76,909	971	13,208	9,146	98,779	0	0	28,703	390,362
九州	佐賀県	2,309	32,791	8,109	110,288	12,201	131,770	54	738	3,998	54,367
地区	福岡県	4,504	63,962	7,706	104,805	8,079	87,249	18	239	27,714	376,913
		国産材製	材廃材	外材製	材廃材	建築	廃材	新·増	築廃材	公園	剪定枝
		有効利用可能量 DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年
東北	岩手県	12,459	225,502	2,699	48,846	2,742	49,625	2,467	44,659	14,815	87,487
地区	宮城県	6,154	111,394	4,462	80,109	10,114	183,068	725	13,117	2,652	30,503
九州	佐賀県	1,640	29,683	162	2,938	3,896	70,511	291	5,266	611	7,022
地区	福岡県	1,547	27,996	1,045	18,919	4,007	72,535	2,246	40,650	3,562	40,965

Table 1 Biomass endowment amount and effectiveness available amount

	乳用牛糞尿		糞尿	肉用4	牛糞尿	ぶた糞尿		採卵鶏糞尿		ブロイラー糞尿	
		有効利用可能量 DW-t/年	有効利用熱量GJ/年	有効利用可能 量DW-t/年	有効利用熱量GJ/年	有効利用可能 量DW-t/年	有効利用熱量GJ/年	有効利用可能 量DW-t/年	有効利用熱量GJ/年	有効利用可能 量DW-t/年	有効利用熱量GJ/年
東北	岩手県	6,642	39,690	14,815	87,487	6,642	39,690	2,847	32,739	13,686	223,060
地区	宮城県	5,578	32,132	13,198	77,927	3,973	23,750	1,262	14,505	1,096	17,866
九州	佐賀県	1,133	6,521	8,581	50,669	1,582	9,449	467	5,364	2,489	40,560
地区	福岡県	4,112	23,683	3,382	19,977	1,077	6,443	3,706	42,624	524	8,523

-											
		下水汚泥()	農縮汚泥)	し尿浄化槽・余剰汚泥		集落汚水汚泥		食品加工廃棄物		家庭系厨芥類	
		有効利用可能量 DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年	有効利用可能 量DW-t/年	有効利用熱量 GJ/年
東北	岩手県	680	6,046	309	2,992	623	6,297	200	576	18,311	373,577
地区	宮城県	0	0	241	2,332	463	4,678	4,400	12,672	34,234	698,455
九州	佐賀県	0	0	372	3,602	190	1,922	2,561	7,374	11,744	239,609
地区	福岡県	3,562	31,687	818	7,920	142	1,437	1,800	5,184	69,199	1,411,822

-				
事業系厨芥類		厨芥類	* バイオマス推計方法の定義	
		有効利田可能	有动利田執景	(1)賦存量
		量DW-t/年	GJ/年	」 賦存量は、バイオマスの利用の 可否に関わらず 理論上1年間に発生、 排出される
車 北	岩手県	7,567	154,388	量とした。なお、本定義によらないものは個別に定義してた。
州区				(2)有効利用可能量
	宮城県	14,740	300,728	有効利用可能量とは、賦存量よりエネルギー利用、堆肥、農地還元利用等、既に
九.州	佐賀県	4,922	100,427	利用されている量を除き、さらに収集等にに関する経済性を考慮した量を利用可能 量とした。
地区	右回闾	21.011	622 706	(3)熱量
	111回乐	31,011	032,700	賦存量と有効利用可能量について、熱量の推計を行った。熱量はバイオマス種に トリ直接燃焼また(ナメタン発酵に上り発生オスメタンの執量と」で算出を行った

Summarizing the results, the number are shown in Table 2.

		有効利用可能量DW-t/年	有効利用熱量GJ/年
单小种区	岩手県	318,092	4,279,248
朱北地区	宮城県	209,847	3,041,795
計	-	527,939	7,321,043
누 에 해요.	佐賀県	112,331	1,488,343
767117012	福岡県	252,026	3,964,889
計	-	364,357	5,453,232

Table 2Summary table

(2) The expected amount of power generation from biomass direct combustion

After calculating the total amount of heat per year from each of the effective use possible amount of both regions,

Tohoku district: 7,321,043GJ/year \ 2,033,623,055kwh

Kyushu district: 5,453,232GJ/year ≒ 1,514,786,650kwh

Power generation amount in the case of use all the effective utilization heat quantity by the efficiency 20% of the power generation system,

Tohoku district: 2,033,623,055kwh × 0.2 = 406,724,611kwh

Kyushu district: 1,514,786,650kwh × 0.2 = 302,957,330kwh

Output in the case of the power generation equipment that runs the power generation per year 7,000 hours,

Tohoku district: 406,724,611kwh ÷ 7,000h = 58,104kw

Kyushu district: 302,957,330kwh ÷ 7,000h = 43,280kw

When there is an effective available amount of about 10 to 20%, it can be expected that the following output.

Tohoku district: 58,104kw × $10 \sim 20\% = 6,000 \sim 10,000$ kw Kyushu district: 43,280kw × $10 \sim 20\% = 5,000 \sim 10,000$ kw (3) Amount of heat required for biomass fuel drying

Required amount of heat to dry the biomass waste, is calculated as follows.

① Effective available capacity

If drying the moisture content from $60\% \rightarrow 15\%$, water evaporation amount W is,

W = effective use possible amount × (1- solids ratio before drying / solids ratio dried) Tohoku district W = $527,939t/year \times (1-40\% / 85\%) = 279,497t-H_2O/year$

Kyushu W = $364,357t/year \times (1-40\% / 85\%) = 192,895t-H_2O/year$

(2) The necessary amount of heat to dry

Latent heat of vaporization at 70° C (qj) = 2,332kJ/kg, and the drying efficiency (n) = 60%.

 $q = W \times qj / n$

Tohoku district q = $237,572 \times 2,332 / 0.6 = 924$ GJ/year

Kyushu district q = $192,895 \times 2,332 / 0.6 = 750$ GJ/year

3 If you have 10 to about 20% of the effective possible amount of use

Tohoku district 924GJ/year \times 10 ~ 20% = 100 ~ 200GJ/year

Kyushu district 750GJ/year \times 10 \sim 20% = 75 \sim 150GJ/year

4. Challenges for biomass direct combustion power generation

(1) Collection challenges

· How much ensured biomass collection amount is, from location issues?

· It was assumed 10 to about 20% of the effective use possible amount, as a planning.

· Local understanding can be obtained in broad-based way?

(2) Issues of plant installation

· ILC facility adjacent is favor, but challenges such as landscape and smell issue remain.

· Whether it is possible to underground plant including the cost?

 \cdot What is extent of temperature, amount, operating time, and period of the tunnel exhaust heat?

· Recycling of incinerator ash? or final disposal method?

5. Reference Case (Hitachi cement) Biomass methane fermentation plant

This project, has large part at the joint venture with local governments and the private sector, in a sense might also say PPP (Public Private Partnership) civil cooperation. There is a need to local governments to be a prerequisite to gain certification of Biomass Town, confirmation of intention is important (Figure 2).

Figure 2 Tsuchiura Biomass Town Initiative

(1) Overview of biomass utilization business

Framework of the business is as follows, the gas by methane processing mainly from food waste (general waste, industrial waste) is used as a co-combustion gas of the cement burning fuel. Further it features a composting facility, by utilizing a part of, such as digestion solution from the methanation facility, perform the manufacture and sale of compost (Figure 3). In this project, there is also a merit of burden reduction, such as a reduction in the size of the incinerator, in local government.

As for business scale, it becomes 100t/day of methane gas reduction facility, and 30t/day composting facility.

The facility of summary flow is shown in Figure 4. By acceptance of garbage, animal and plant residues in biomass in the building, after removal of the fermentation unsuitable material at fracture separation, it is fed to the methane fermentation tank through the solubilization, anaerobic fermentation process is performed.

Biogas obtained by methane fermentation process, is used as auxiliary fuel substitute of the existing incineration facilities, also makes use of the surplus steam boilers of the existing incineration facility as a heat source of the methane fermentation tank and dryer of the new plan facility.

Digestion solution after methane fermentation is to solid-liquid separation at the dehydrator. Dehydration residue is subjected to aerobic fermentation process in the later stage of fermentation composting facility, to provide compost to the regional farmers and citizens. Filtrate after dehydration processed by water treatment to the sewage discharge standards, then it will be discharged into the sewer.

Figure 3 framework of business

Figure 4 the processing flow of methane gas

Geo-thermal Power Generation System using variety of under-ground energy (Toru Shibagaki, Toshiba)

Summary of Geo-thermal power generation of Tohoku Electric Power (Kentaro Otuki, Tohoku Electric Power)

1. Mechanism and characteristics of geothermal power

o Mechanism of geothermal power generation

The steam of low temperature that has finished work in a steam turbine becomes condensed water in the condenser, is back from the reinjection wells in the basement. (Figure 1)

Figure 1 mechanism of geothermal power generation

• Features of geothermal power generation

Features of geothermal power generation is as follows.

- Net domestic energy that does not rely on imports
- Renewable energy
- Stable power supply in the natural energy
- Environmental load is small, CO₂ emissions is small
- Multi-purpose use is possible (agriculture, forestry and fisheries, tourism, etc.)
- Share is not very large in the world

Life cycle CO₂ emissions of geothermal power generation has become a low level

compared to other power sources.

Also, compared to other renewable energies, as high as about 80% facility usable rate, there are many power generation can be characterized by the same output. (Figure 2)

<Source> Federation of Electric Power Companies of Japan, "Nuclear energy drawings collection 2014"<<p>□ 電源別の設備利用率

地熱	約80%
風力	約20%
太陽光	約12%

<出典>コスト等検証委員会報告書 (内閣府:平成23年12月19日)

Figure 2 life cycle CO₂ emissions, each power supply facility usable ratio

2. World and Japan's geothermal power generation

• History of geothermal power generation

1904 Driving a generator using natural steam by Jiriko Conti Duke in Italy Larderello (output 0.75 hp)

1913 The world's first geothermal power plant in Italy Larderello (output 250kW)

1918 Vice Admiral Toshiharu Yamauchi started excavation at Oita Prefecture Hayami District Asahi village Tsurumi 950-1. The success of excavation in 1919. (Pore size 4 suns, depth 80 shaku)

1925 Mr. Osamu Tachikawa of Tokyo electric light Ltd. Institute, took over the business

of Yamauchi et al, named "Tsurumi fumaroles", after number of test results, the first successful geothermal power generation in Japan by the turbine. (Output 1.12kW)

1947 Geological survey was started for research on the selection of geothermal development area.

1948 Tone bowling Ltd. succeeded in power generation by steam turbine in Shizuoka Prefecture Joto village Yunosawa laboratory. (3kW)

1951 The geothermal power generation succeeded in Industry and Technology Agency Beppu test site. (Output 30kW)

1958 The world's first start of operation of geothermal power plants in hot water separation type in New Zealand Wairakei. (Output 6,500kW)

1960 Start of operation of private geothermal power generation at Fujita Kanko Inc. Hakone Kowakien. (Output 30kW, 1965 obsolete)

1966 Start a geothermal power generation by Japan Metals & Chemicals Co., Ltd. At Matsukawa geothermal power plant at the first time in Japan. (Output 9,500kW)

1967 Start a geothermal power generation by Kyushu Electric Power Co., Ltd. At Otake power plant. (Hot water separation type, output 11,000kW)

1996 Geothermal power output 500 000 kW achieved.

2006 Japan's first binary power plant (Hatchobaru, 2,000kW) was in operation.

2012 feed-in tariff (FIT) was started.

• Geothermal power generation facilities in the world

Japan is located in the volcanic zone of the Pacific Rim, abundance of geothermal is said to be third largest after the United States, and Indonesia, however, the introduction amount is not as many than other countries. (Figure 3, Figure 4)

<Source> National Institute of Oil, Gas and metal mineral resources mechanism "geothermal pamphlet"

<Source> National Institute of Oil, Gas and metal mineral resources mechanism "geothermal pamphlet"

Figure 4 World major geothermal resource amount of each country, and the change in the geothermal power generation capacity

 \circ situation of geothermal development in the world

Geothermal development in countries around the world is accelerating aggressively. (Figure 5)

単位:万kW

半日	2005年	2010年	2015年(見込み)					
不国	256.4	309.3	540					
	(注)主な地熱発電所:ガイザ	ーズ(カリフォルニア州、14基	、出力127.3万kW)等					
イバカシア	2005年	2010年	2015年(見込み)					
コントイング	79.7	119.7	350					
(注)主な地熱発電所:サラク(西ジャワ州、6基、出力37.5万kW)等								
	_	-						
	2005年	2010年	2015年(見込み)					
ニュージーランド	43.5	62.8	124					
(注)主な地熱発電所:タウポ(ニュージーランド北島、11基、出力17.5万kW)等								
	(注)主な地熱発電所:タウホ	。 《(ニュージーランド北島、11書	としていた。 「「「「「「」」。 「「」」。 「」」。 「」」。 「」」。 「」」。 「					
	(注)主な地熱発電所:タウホ 2005年	。 パニュージーランド北島、11ま 2010年	ま、出力17.5万kW)等 2015年(見込み)					
アイスランド	 (注)主な地熱発電所:タウボ 2005年 20.2 	(ニュージーランド北島、11ま 2010年 57.5	^{ま、出力17.5万kW)等} 2015年(見込み) 80					

<出典> Ruggero Bertani : Geothermal power generation in the world 2005-2010 update report

Figure 5 status of the world's geothermal development

3. The proportion of power generation scale of nationwide and our company

• Power configuration ratio based on power generation capacity

As for our company's geothermal power generation, it is about 1% of power generation installed capacity in our company inside, and it is a minority and less than 1% in Japan. (Figure 6)

Figure 6 Power supply configuration ratio in accordance with power generation installed capacity (nationwide, our company)

• Power generation scale of geothermal power

Currently, geothermal power generation in Japan has been developed in the17 points, most of which have been installed in the Tohoku and Kyushu. (Figure 7)

	全国	東北電力
地点数	17地点	5地点
認可出力 (万kW)	51. 509	24.730 (48%)
発電電力量 (億kWh)	26. 2	10. 3 (39%)

<Source> geothermal power generation of the current status and trends 2013

<Source> "Japan's geothermal power plant" Industrial Scienc and Technology Institute HP

Figure 7 Japan's geothermal power plant and the power generation amount

4. Features and efforts of our geothermal power

o Overview of the geothermal power plant of our company

Our Company has 5 power plant 6 generators including a cooperating group, total authorized output accounts for about 48% of the geothermal power plant of Japan. (Figure 8)

Our company's (including a group of companies) geothermal power plants are, relatively, located in the vicinity of the ILC candidate site. (Figure 9)

発電所名	所在地	号機	設備容量 (kW)	運転開始	蒸気供給会社
葛根田	岩手県雫石町	1号	50,000	S53.5.26	東北水力地熱(株) (旧)日本重化学工業
		25	30,000	по. 3. 1	
上の岱	秋田県湯沢市	_	28,800	H6.3.4	東北水力地熱(株) (旧)秋田地熱エネルギー
澄川	秋田県鹿角市	_	50,000	H7.3.2	三菱マテリアル(株)
柳津西山	福島県柳津町	_	65,000	H7.5.25	奥会津 地熱 ㈱
	小 計		223,800		
松川	岩手県八幡平市	-	23,500	S41.10.8	東北水力地熱(株)
	合 計		247,300		

F :	0	<u></u>		- f 41	0			41		
Figure	ð	Overv	/iew	of the	Com	panv	s g	eothermai	power	generation
	-					p may	~ 0		P	0

Figure 9 position of the geothermal power plant of the Company (including a group of companies)

 \circ Our geothermal power generation organization

The steam production and reduction are conducted by steam supply company. We adopted a joint development system for generating electric power by purchasing the steam (about Matsukawa, consistently operated by Tohoku Hydropower Geothermal Co., Ltd. [group of companies]). (Figure 10)

* Matsukawa geothermal power plant, consistently operated by Tohoku Hydropower Geothermal Co., Ltd. (group of companies)

Figure 10 Our company's geothermal power generation organization

 \circ Features of our geothermal power plant

Geothermal power plants have a simple structure without such a boiler compared to thermal power plants.

From this reason, we have adopted the remote operating system to monitor and control in the monitoring room of 10-30 km away from each geothermal power plant.

Our company has proceeded further rationalization from 2000 fiscal year, to employ a centralized monitoring and controlling of 5 geothermal power generators of four power plants locations from Akita thermal power plants. (Figure 11, Figure 12)

Figure 11 centralized remote monitor control system

Figure 12 Overview of centralized remote monitor control system

• Changes in year average output

Our geothermal power plants, there is a high performance experience, after the operation of Kakkonda Unit 1 (1978). In 1990 or later, we have sequentially started the operation of Uenotai, Sumikawa, Yanaizu-Nishiyama, and Kakkonda No.2. Initially,

although the output power was the order of 70-80 percent in about 5-10 years, and significant vapor reduction was happened in 10 years passed, and the output power became about 50 percent in about 15 years and now. After that, it is almost stable at this level.

As annual average output (red line) is close to approval output (blue line), it shows a high investment performance. (Figure 13)

Figure 13 Trends in year average output

 \circ Transition of power generation time utilization

Transition of power generation time utilization ratio of each power plant can be divided to two groups; Uenotai and Sumikawa of high utilization (70-90 percent) group even 15 years after the start of operation, and Kakkonda, Yanaizu-Nishiyama and Matsukawa of low utilization (50% or less) group. You can see the difference in investment performance point by point. (Figure 14)

The power generation time utilization ratio is the percentage ratio of the amount of power generated during the fiscal year, with the amount of power that can be obtained within the actual power generation time at the rated output.

Figure 14 Transition of power generation time utilization ratio

• Challenge of geothermal power plant operation

"Steam well attenuation", "scale", and "hydrogen sulfide" are the issues as big factors that reduce the output (operating ratio) in geothermal power plant operations. Our company has implemented for the operating rate improvement efforts.

• Operating ratio improvement efforts

In Uenotai and Sumikawa geothermal power plant of our company, it has gained a certain degree of success by drilled the replenishment well into the natural park, by receiving benefits of a deregulation of Japan. (Figure 15, Figure 16)

Figure 15 the example of Uenotai thermal power plant replenishment well T-56

Figure 16 The situation of fumaroles of inclination well in the National Monument Park (replenishment production well T-56)

 \circ Geothermal reservoir recharge project

There is a case that the power generation output is fluctuating in a geothermal power plant by being unable to collect the required amount of steam and hot water stably.

By performing the supply of water to the heat source of the underground more appropriately, JOGMEC (National Institute of Oil, Gas and metal mineral resources) is developing a technology to achieve optimization and stabilization of the collected amount of steam and hot water at Yanaizu-Nishiyama geothermal power plant. (Figure 17)

Figure 17 Schematic of geothermal reservoir recharge project

- 5. Challenges and the Japan's support system for geothermal power generation
- Challenges geothermal power generation
- · Single machine capacity is small.

In business power generation facilities in Japan, 3,300kW ~ 65,000kW In Japan of private power generation 100kW ~ 23,500kW

· Research ~ development ~ commercial operation take time.

National-wide survey \sim wide area survey \sim rough survey \sim fine survey \sim development survey \sim power plant construction.

(Example: on Uenotai took 23 years)

· Number of new power plant construction is limited.

Since promising areas are unevenly distributed in the Tohoku and Kyushu, and since about half of the possible development area are located in a special area on the Natural Parks Law, new development is difficult.

• For support measures in geothermal development process

Auxiliary support of Japan related to geothermal development (JOGMEC) has been provided in stages. (Figure 18)

<Source> Agency for Natural Resources and Energy, "the current state of geothermal resources development (September 2014)."

Figure 18 Support measures in geothermal development process

o Geothermal development point of nationwide

Figure 19, is a situation of geothermal development sites nationwide.

We in the corporate group are being carried out the early stages of the investigation "Kijiyama - Shimonotai (Akita Prefecture Yuzawa City) area".

<Source> Agency for Natural Resources and Energy, "the current state of geothermal resources development (September 2014)."

Figure 19 status of geothermal development sites nationwide

 \circ Geothermal power plant that was operating since FIT

The operational geothermal power generation facilities after FIT (feed-in tariffs) were five plants and total output of about 250kW. At the moment it is mostly small-scale plant. (Figure 20)

Figure 20 geothermal power plant that has operated since FIT

6. Efforts to geothermal development of our company's corporate group

o Kijiyama, Shimonotai regional geothermal resource development research projects

Our group of companies "Tohoku Hydropower Geothermal" is making the geothermal resource survey of the early stages, in the adjacent land of Uenotai thermal power plant "Kijiyama, Shimonotai".

In the area of Kijiyama and Shimonotai, up to now, we conducted the ground survey, exploration well two, and monitoring well single drilling, then make ongoing the overall analysis. (Figure 21, Figure 22)

Figure 21 bird's-eye view of Kijiyama, Shimonotai area

Figure 22 Kijiyama-Shimonotai regional position

 \circ Kijiyama, Shimonotai region geothermal development research results and planning

Kijiyama - Shimonotai survey schedule is below.

Continues a similar survey to 2015 fiscal year, and to review and evaluate the commercialization potential on it, is expected to plan an investigation after the 2016 fiscal year. (Figure 23)

年度	H22	H23	H24	H25	H26	H27
調 査 位置づけ	地熱構造調査	地熱構造 モデル作成	地熱構造 モデル見直し	地質構造調査	E・モニタリン:	ブデータ収集
地表調査 坑井掘削 他	 地省工作 地化工作 地化研究 電力 1 1	- 電磁探査 - 自然電位探査 - フラクチャ 解析 - 坑井圧力 モ別ンク - 温泉変動 モ別ンク - 微小地震観測	- 電磁探査 - 坑井圧力 モニタリング - 温泉変動 モニタリング - 微小地震観測	 坑井圧力 モシリンク[*] 構造試錐井 掘削 温泉モニタリンク[*] 井掘削 温泉変動モニタ リンク[*]他 	・坑井圧力 モニタリング ・構造試錐井 掘削 ・トレーサー試験	 ・坑井圧力 モリック ・隣接貯留層 との関係評 価他 ・事業化可能 ・ 事業化討

Figure 23 Kijiyama, Shimonotai investigation schedule

7. Utilization of geothermal energy

• Effective utilization of geothermal energy due to the difference in the temperature

We are utilizing the area of the steam power generation, but in recent years has spread the movement to take advantage of geothermal resources in the binary power generation. (Figure 24)

<Source> New Energy Foundation brochure Figure 24 Geothermal energy area and the availability

• Mechanism of geothermal binary power generation (hot spring power generation)

Binary power generation is a system for generating electricity by turning a turbine generator, using a medium having a lower boiling point than water boiled in hot spring of heat ($70^{\circ}C \sim 150^{\circ}C$). (Figure 25)

If the order of several hundred kW is required, it is possible to develop in a short period of about 2-3 years.

<Source> Agency for Natural Resources and Energy, "the current state of geothermal resources development (September 2014)."

Figure 25 mechanism of geothermal binary power generation

• Case Study of geothermal resources

Matsukawa geothermal power plant (Tohoku Hydropower Geothermal Co., Ltd., Iwate Prefecture Hachimantai) warmed condensed water after power generation by the addition of steam, and sold to Hachimantai Industrial Promotion of the third sector. It has been used in Hotels and cottage villa, and in greenhouses with a hot water supply contract. (Figure 26)

(In the 2010 fiscal year, 70 °C, up to 260t/h)

	供給先			
・ホテル等 38車 ・商店 15車	Ŧ ・保養所 Ŧ ・貸別荘施設	25軒 1軒	・別荘 ・病院	613軒 1軒
・ 老人ホーム 1 ・ 豊業田ハウス (- - - - - - - - - -	1軒	10100	
・農業用ハウス	95棟(冬期のみ)	• +1		

Figure 26 Matsukawa condensed water supply destination after geothermal power plant power generation

End.

7 Editor words

High efficiency energy conversion in International Linear Collider (ILC) is an inevitable issue among advanced accelerator project. ILC should be the model for use of high-efficiency equipment, and the use of sustainable and renewable energy sources. The Technology Group of the Association of Adavanced Accelerator Science and Technology Promotion began a study of this issue. This report is a summary about the technology being studied which has been proposed at green ILC Working Group in February 2014 to March 2015. Technical study is intended to make continued even after April 2015, but the present report is the first stage of the study results, which will be a help document at the time of ILC detailed design stage in the near future. We would like to keep both the Japanese and English version of this report in the ILC-related web-page.

Individual presentations at the working group can be found at;

https://aaa-sentan.org

See the member pages of the inside.

Editor May 27, 2015