Study on the International Linear Collider Beam Dump by plasma-wakefield deceleration

 T. Saeki, J. Fujimoto, H. Hayano, K. Yokoya (KEK/Sokendai)
 T. Tajima, D. Farinella, X. Zhang (University of California at Irvine) M. Zeng (ELI-NP, Romania)
 A. W. Chao (SLAC)
 D. Perret-Gallix (LAPP/IN2P3 – KEK)

> 1st Nov. 2016 Academia meets industry forum IEEE-NSS/MIC Strasbour, France

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

高エネルギー加速器研究機構

1

KEK

2016/11/1

1. Abstract

As the scale of accelerator projects and their power consumptions increase, improving the power efficiency and the power recovery of accelerator systems become immediate and important requirement and goal. Moreover, the radiation level in the accelerators should be kept to a minimum extent to cope with environmental consideration. In the design of the next future largest accelerator, the International Linear Collider (ILC), the power consumption is estimated to be 161 MW. Important efforts are being undertaken to reduce the electricity consumption and to lower the radiation level in the current study of its implementation plans. Consequently, we proposed a new system of beam dump which is based on the wakefield deceleration of beams in plasma, where the radiation level is far less than in the conventional designs and where the beam power might be recovered. We started the study in early 2015 and first focused on simulation where the ILC electron beams at 250 GeV is dumped into a gas chamber of an appropriate pressure and size so as to create a plasma and therefore to achieve efficient deceleration. We will also consider energy recovery from the created plasma in the gas chamber. The resulting radioactive products are expected to be reduced drastically when compared to the conventional designs. The article presents the current status of these studies.

KFK

Contents

- 1. Abstract
- 2. Water beam dump design in the Technical Design Report (TDR) of ILC
- 3. Alternative discussed design : noble gas dump
- 4. Collective deceleration for compact beam dump
- 5. Study group for Green ILC beam dump
- 6. Preliminary result of deceleration simulation
- 7. Summary and outlook

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

3

KEK

2016/11/1

Beam dump from a view point of Green-ILC

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

The will

2. Water beam dump design in Technical Design Report (TDR) of ILC

Chapter 8. Beam Delivery System and Machine Detector Interface

8.8	Beam dumps and Collimators
8.8.1	Main Dumps

four dumps

10 bar water vessels

30cm diameter. 1mm thick Ti window

Figure 8.15

155 °C [191].

Water serves as both The coolant and the stopping medium

vortex flow

The beam-delivery system contains two tune-up dumps and two main beam dumps. These four dumps are all designed for a peak beam power at nominal parameters of 18 MW at 500 GeV per beam, which is also adequate for the 14 MW beam power of the 1 TeV upgrade. The dumps consist of 1.8 m-diameter cylindrical stainless-steel high-pressure (10 bar) water vessels with a 30 cm diameter, 1 mm-thick Ti window and also include their shielding and associated water systems (Fig. 8.15). The design [188] is based on the SLAC 2.2 MW water dump [189, 190].

KEK

ATT with

Norbert Tesch (DESY) – Design Studies for an 18 MW Beam Dump at TESLA – ICRS 10 / RPS 2004 – Madeira – May 2004

Water beam dump design

- The water dump system in TDR/ILC is well studied and a lot of simulation have been carried out.
- It, however, has issues to further study points;

 Dump window with 10 bar,
 Treatment of Hydrogen gas production,
 Mitigation of water-activation products,
 155°C hot-water can be obtained

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

КЕК

3. Alternative discussed design: noble gas dump

Cross section of a tunnel

Based on "Another idea of a LC dump" by Albrecht Leuschner 16/09/2003

KEK

At a Length of 1000m Ar filled beam pipe Ar serves as beam spreader Iron Cylinder Water cooling

Air

KEK

Energy deposition with 400 GeV electron

Gas beam dump design

(1) No dump window problem because of 1 bar
(2) No hydrogen bubble production problem
(3) Less iron-activation
(4) Too long facility/tunnel (1000 m)
(5) Not been built before

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

KEK

4. Collective deceleration for compact beam dump

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 101303 (2010)

Collective deceleration: Toward a compact beam dump

H.-C. Wu,¹ T. Tajima,^{1,2} D. Habs,^{1,2} A. W. Chao,³ and J. Meyer-ter-Vehn¹

¹Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany ²Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany ³SLAC National Accelerator Center, Stanford University, Stanford, California 94309, USA (Received 10 December 2009; published 5 October 2010)

Bethe-Bloch formula for stopping power in material

$$-(dE/dx)_{I} = (F/\beta^{2})[\ln(2m_{e}\gamma^{2}v^{2}/I) - \beta^{2}], \quad (1)$$

КЕК

where *E* is the electron kinetic energy, $F = 4\pi e^4 n_{e,m}/m_e c^2 = e^2 k_{pe,m}^2$, $n_{e,m}$ is the electron density in the stopping material, $k_{pe,m} = \omega_{pe,m}/c$ is the plasma wave number, and $\beta = v/c$ is the normalized electron velocity.

The collective stopping power for plasma wakefield deceleration of the electron bunch is large;

$$-(dE/dx)_{\text{coll-wave break}} = m_e c \omega_{pe} (n_b/n_e).$$
 (5)

Equation (5) is exact for the resonant excitation of a wakefield with bunch length $\sigma_L/\lambda_{pe} \approx 0.5$, transverse size $\sigma_T/\lambda_{pe} \ge 0.3$, and modest density ratio $n_b/n_e < 10$

where λ_{pe} is the plasma wavelength of the background plasma with density n_e , n_b is the bunch density.

For a long beam $\sigma_L/\lambda_{pe} \gg 1$, the stopping power decreases exponentially with the factor $k_{pe}\sigma_L \times \exp(-k_{pe}^2\sigma_L^2/2)$. For a narrow beam $\sigma_T/\lambda_{pe} \ll 1$, the stopping power decreases with the factor $k_{pe}^2\sigma_T^2$.

KEK

Original idea was to apply the collective deceleration beam dump to a LPWA beam with high beam density. The required dump length ~ 1mm. We now consider it for ILC with a much more dilute beam. The dump becomes longer.

From
$$\sigma_L / \lambda_{pe} = \frac{1}{2}$$
, then $\sigma_L = \pi c / \omega_{pe}$ and $n_b = N_b / (\sigma_L \sigma_T^2)$,

$$-(dE/dx)_{coll-wave \ break} [GeV/cm] = 5.74 \times N_b / \sigma_T^2 [cm]$$

means

$$L_{dump}$$
[m] = 1.7 × 10¹³ $\sigma_T^2 / N_b E_0$ [GeV], $\sigma_T > 0.6 \sigma_L$

In the case of ILC, $N_b=2 \times 10^{10}$, $E_0=500$ GeV,

$$\begin{split} L_{dump}[\mathbf{m}] &= 4.3 \times 10^5 \ \sigma_T^{\ 2}[\mathbf{cm}] \\ &= 130 \ \mathbf{m} \quad \mathbf{w}/ \ \sigma_L = 300 \ \mu \ \mathbf{m}, \quad \sigma_T = 0.6 \times \sigma_L = 180 \ \mu \ \mathbf{m} \\ &= 10 \ \mathbf{m} \quad \mathbf{w}/ \ \sigma_T = 50 \ \mu \ \mathbf{m}, \quad \sigma_L = \sigma_T / 0.6 = 83 \ \mu \ \mathbf{m} \end{split}$$

KEK

Collective deceleration dump No dump window problem No hydrogen gas production problem Less radioactivation Compact facility Energy might be extracted as electric energies

- From the view point of Green-ILC, it is worth to study the possibilities to apply collective deceleration dump system.
- It should be checked that it works for the ILC long beam condition.
- If introducing the bunch compression after the collision point, it is possible to shorten the length of the beam dump facility.
- Efficiency of recovering energy is important from the view point of Green-ILC

KFK

5. Study Group of the Green ILC Beam Dump

We successfully obtained the budget (~40,000 dollars for 3 years, 2015 - 2017) from the Japan Society for the Promotion of Science (JSPS) to study the Green Beam Dump by plasma wakefield deceleration.

KEK

ATT A

6. Preliminary result of beam deceleration simulation

Simulation code: EPOCH

Dr. X. Zhang (UCI)

ATT with

KEK

Preliminary result of beam deceleration simulation

Dr. X. Zhang (UCI)

First result of simulation is encouraging. Working is continuing with priority.

3m

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

123

ILC beam after collision

$$\sigma_{x} = 600 nm$$

$$\sigma_{z} = 300 \mu m$$

$$L \sim \frac{n_{e}^{2} f_{rep}}{4\pi\sigma_{x}\sigma_{y}} = \frac{n_{e}P_{beam} / E_{beam}}{\sigma_{x}\sigma_{y}}$$

$$P_{beam} = E_{beam} n_{e} f_{rep} \propto \$$$

$$F_{beam} = 250 GeV$$

$$n = 2 \times 10^{10} \Longrightarrow P_{e} = 113MR$$

In ILC, in order to increase the collision rate, the incoming two beams are squeezed into the small size. In the TDR, the beam shape before the collision and collision rate is estimated and simulated, but the beam shape after the collision has not been estimated and simulated.

We need the calculation, simulation, and design of optics for the collided beam to be made into the ideal shape for the collective deceleration. Present preliminary result used the undisrupted beam parameters.

 $f_{rep} = 14100$

Inter-University Research Institute Corporation High Energy Accelera

Possibility of proof-of-principle experiment at KEK. Three possible testbeds.

If simulation results look good, we will propose the plan of proof-of-principle experiment at KEK to use existing accelerator beams. Funding to be secured.

Energy recovery from plasma wakefield

- The paper claimed that at least in the linear wake regime, "in principle, the energies from the decelerated beams deposited in the form of organized plasma wakefield may be recovered into electricity."
- Any electric circuit such as a metallic loop in the plasma picks up coherent electric currents caused by the plasma collective oscillations. Then, external circuit extract electric energies rather than heat.
- "Because the energy of the plasma electrons is much less than that of the beam electrons, the collisions do not give rise to excessive radioactivation."

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

KFK

7. Summary and outlook

- The conventional design of ILC beam dump (water dump system) in TDR is well studied, but it has several difficulties. Alternative design (gas dump system) is very long (~1000 m).
- Collective deceleration dump (Green beam-dump) has several advantages: no pressure problem, no hydrogen problem, less radio-activation, compact facility, and potential energy recovery.
- First preliminary result of collective deceleration dump of 250 GeV electron beam shows that 15% of energy loss in first 3 m of beam dump.
- To realize the green beam dump in ILC, the beam shape after collision should be optimized to the collective deceleration.

KFK

• If simulation results look good, we will propose proof-of-principle experiment at KEK.

Backup slides

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

ATT with

2. Introduction

Detector for particle reaction at center

Tunnel length ~ 32 Km

Rey.Hor

23

KEK

Pros/cons

	Water dump	Gas dump			
length	10 m	1000 m			
Window pressure	10 bar static, 0.5 bar dyn.	1 bar static, 0.01 bar dyn			
Window diameter	30 cm	8 cm			
Hydrogen gas producing	Several liter/sec @ 20 MW	no			
Tritium production	300 TBq	30 TBq (in Iron)			
Component Activity	1.2 mSv/h	~ 1 10 mSv/h			

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

The wint

The dumps absorb the energy of the electromagnetic shower cascade in 11 m $(30 X_0)$ of water. Each dump incorporates a beam-sweeping magnet system to move the charged beam spot in a circular arc of 6 cm radius during the passage of the 1 ms-long bunch train. Each dump operates at 10 bar pressure and also incorporates a vortex-flow system to keep the water moving across the beam. In normal operation with 500 GeV beam energy, the combination of the water velocity and the beam sweepers limits the water temperature rise during a bunch train to 155 °C [191]. The pressurisation raises the boiling temperature of the dump water; in the event of a failure of the sweeper, the dump can absorb up to 250 bunches without boiling the dump water.

8.8.1.2 Mitigation of water-activation products

Activation products are primarily the result of photo-spallation on ¹⁶O, primarily ¹⁵O, ¹³N, ¹¹C, ⁷Be and ³H (tritium). The first three radionuclides have short half lives and decay after \sim 3 hours. The ⁷Be is removed from the system by filtering it out in a mixed-bed ion-exchange column located in the dump-support cavern. Tritium, a \sim 20 keV β emitter with a half life of 12.3 years, builds up in the water to some equilibrium level; the tritium is contained by the integrity of the dump system and the backup measures described in the preceding section.

8.8.1.4 Shielding and protection of site ground water

Assuming a dry rock site, as in the baseline configuration, 50 cm of iron and 150 cm of concrete shielding are needed between the dump and other areas of the tunnel enclosure to protect equipment from radiation damage. If the chosen site is not dry, the area surrounding the dump must be enveloped by an additional 2 m-thick envelope of concrete to prevent tritium production in the ground water.

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

PETE Said

Scheme of the water system for the water beam dump

Figure 6: Scheme of the water system for the water based beam dump

KEK

The wine

ILC parameters

IP and General Parameters			TF = Traveling Focus						E _{cm} Upgrade	
								L Upgrade	Al	B1b
Centre-of-mass energy	E cm	GeV	200	230	250	350	500	500	1000	1000
Beam energy E		GeV	100	115	125	175	250	500	500	500
Collision rate	frep	Hz	5	5	5	5	5	5	4	4
Electron linac rate	flinac	Hz	10	10	10	5	5	5	4	4
Number of bunches	nb		1312	1312	1312	1312	1312	2625	2450	2450
Electron bunch population	N_{-}	×10 ¹⁰	2.0	2.0	2.0	2.0	2.0	2.0	1.74	1.74
Positron bunch population	N_{+}	×10 ¹⁰	2.0	2.0	2.0	2.0	2.0	2.0	1.74	1.74
Bunch separation	Δt_b	ns	554	554	554	554	554	366	366	366
Bunch separation $\times f_{RF}$	Atbf	RF	720	720	720	720	720	476	476	476
Pulse current	I beam	mA	5.8	5.8	5.8	5.8	5.79	8.75	7.6	7.6
RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.3	0.3	0.3	0.250	0.225
Electron RMS energy spread	AD/D	%	0.206	0.194	0.190	0.158	0.125	0.125	0.083	0.085
Positron RMS energy spread	Ap/p	%	0.187	0.163	0.150	0.100	0.070	0.070	0.043	0.047
Electron polarisation	P.	%	80	80	80	80	80	80	80	80
Positron polarisation	P_{+}	%	31	31	30	30	30	30	20	20
Horizontal emittance	YEx	μm	10	10	10	10	10	10	10	10
Vertical emittance	YE.	nm	35	35	35	35	35	35	30	30
IP horizontal beta function	Bx*	mm	16.0	14.0	13.0	16.0	11.0	11.0	22.6	11.0
IP vertical beta function (no TF)	β.*	mm	0.34	0.38	0.41	0.34	0.48	0.48	0.25	0.23
IP RMS horizontal beam size	σ.*	nm	904	789	729	684	474	474	481	335
IP RMS veritcal beam size (no TF)	σ_{v}^{*}	nm	7.8	7.7	7.7	5.9	5.9	5.9	2.8	2.7
Horizontal distruption parameter	D_{x}	1	0.2	0.2	0.3	0.2	0.3	0.3	0.1	0.2
Vertical disruption parameter	D.		24.3	24.5	24.5	24.3	24.6	24.6	18.7	25.1
Horizontal enhancement factor	Hor		1.0	1.1	1.1	1.0	1.1	1.1	1.0	1.0
B Vertical enhancement factor	H		4.5	5.0	5.4	4.5	6.1	6.1	3.5	4.1
Total enhancement factor	HD		1.7	1.8	1.8	1.7	2.0	2.0	1.5	1.6
Geometric luminosity	Lenne	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.30	0.34	0.37	0.52	0.75	1.50	1.77	2.64
8	- geom									
	L	×10 ³⁴ cm ⁻² s	0.50	0.61	0.68	0.88	1.47	2.94	2.71	4.32
Average beamstrahlung parameter	Y		0.013	0.017	0.020	0.030	0.062	0.062	0.127	0.203
Maximum beamstrahlung parameter	Ymar		0.031	0.041	0.048	0.072	0.146	0.146	0.305	0.483
Average number of photons / partic	verage number of photons / partick $n_{\rm w}$		0.95	1.08	1.16	1.23	1.72	1.72	1.43	1.97
Average energy loss	SERG	%	0.51	0.75	0.93	1.42	3.65	3.65	5.33	10.20
Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.498	0.607	0.681	0.878	1.50	3.00	3 23	4 31
Coherent waist shift	ΔW_{ν}	μm	250	250	250	250	250	250	190	190
E Luminosity (inc. waist shift)	L	×10 ³⁴ cm ⁻² s	0.56	0.67	0.75	1.0	1.8	3.6	3.6	4.9
Fraction of luminosity in top 1%	L 0.01	L	91.3%	88.6%	87.1%	77.4%	58.3%	58.3%	59.2%	44.5%
Average energy loss	δE_{BS}		0.65%	0.83%	0.97%	1.9%	4.5%	4.5%	5.6%	10.5%
Number of pairs per bunch crossing	aN pairs	$\times 10^3$	44.7	55.6	62.4	93.6	139.0	139.0	200.5	³ 382.6
Total pair energy per bunch crossing	E pairs	TeV	25.5	37.5	46.5	115.0	344.1	344.1	1338.0	3441.0

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

ATT when

ILC parameters

基本的ビームパラメータ(baseline, 5Hz)

Beam Pulse Structure (Low Power)

Inter-University Research Institute Corporation High Energy Accelerator Research Organization

4

ATT with

KEK